Published in

Springer, Wetlands, 8(42), 2022

DOI: 10.1007/s13157-022-01629-4

Links

Tools

Export citation

Search in Google Scholar

Response Patterns of Fen Sedges to a Nutrient Gradient Indicate both Geographic Origin-Specific Genotypic Differences and Phenotypic Plasticity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn wet peatlands, plant growth conditions are largely determined by local soil conditions, leading to locally adapted vegetation. Despite that Carex species are often the prevailing vascular plant species in fen peatlands of the temperate zone, information about how these species adapt to local environmental conditions is scarce. This holds true especially for below-ground plant traits and for adaptations to fen-typical nutrient level variations. To address this research gap, we investigated how different geographic origins (Germany, Poland, The Netherlands) of C. acutiformis and C. rostrata relate to their response to varying nutrient availability. We performed a common garden experiment with a controlled gradient of nutrient levels, and analyzed above- and below-ground biomass production of both Carex species from the different geographic origins. We related these traits to environmental conditions of the origins as characterized by vegetation composition-derived indicator values for ecological habitat conditions. While we detected high above-ground phenotypic plasticity of Carex from different origins, our data point to below-ground genotypic differences, potentially indicating local adaptation: Rhizome traits of C. rostrata differed significantly between origins with different nutrient indicator values. These results point towards differences in C. rostrata clonal spread behavior depending on local peatland conditions. Therefore, local adaptations of plant species and below-ground biomass traits should be taken into account when studying peatland vegetation ecology, as key functional traits can differ between genotypes within a single species depending on local conditions.