Published in

American Institute of Physics, The Journal of Chemical Physics, 22(157), p. 224703, 2022

DOI: 10.1063/5.0125682

Links

Tools

Export citation

Search in Google Scholar

Acidity and metal complexation of edge surface of birnessite-type MnO<sub>2</sub>: Insight from first principles simulations

Journal article published in 2022 by Yingchun Zhang ORCID, Xiandong Liu ORCID, Xiancai Lu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Birnessite-type MnO2 plays key roles in scavenging trace elements in numerous natural environments and has also been regarded as a promising energy storage material. The interfacial properties of birnessite are highly pH-dependent due to the presence of various amphoteric groups on its edges, and, therefore, the acidity constants (pKa) of these groups are vital to the understanding of its electrochemical and environmental performances. However, an accurate acidity dataset for birnessite is absent yet. In this study, we employed first-principles molecular dynamics simulations and the vertical energy gap method to calculate the pKas of groups on the birnessite (010) edge. The interfacial hydration structure was characterized with a focus on the hydrogen bonding network. The obtained pKas suggest that MnOH2 is active while Mn2OH remains inert in a common pH range. Based on these results, the incorporation of transition metals on the edge surface was investigated by taking Ni2+ and Zn2+ as the model cations. The energy changes associated with the incorporation process of Ni2+ from the outer-sphere state indicate that incorporation on the edge surface is more feasible than that on the basal surface presumed in previous studies. Overall, the results obtained provide an atomic-scale insight into the acid–base chemistry of birnessite and form a physical basis for understanding the interfacial processes of birnessite.