Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Biological Chemistry, 8(402), p. 937-943, 2021

DOI: 10.1515/hsz-2021-0185

Links

Tools

Export citation

Search in Google Scholar

iMLP, a predictor for internal matrix targeting-like sequences in mitochondrial proteins

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Matrix targeting sequences (MTSs) direct proteins from the cytosol into mitochondria. Efficient targeting often relies on internal matrix targeting-like sequences (iMTS-Ls) which share structural features with MTSs. Predicting iMTS-Ls was tedious and required multiple tools and webservices. We present iMLP, a deep learning approach for the prediction of iMTS-Ls in protein sequences. A recurrent neural network has been trained to predict iMTS-L propensity profiles for protein sequences of interest. The iMLP predictor considerably exceeds the speed of existing approaches. Expanding on our previous work on iMTS-L prediction, we now serve an intuitive iMLP webservice available at http://iMLP.bio.uni-kl.de and a stand-alone command line tool for power user in addition.