Published in

MDPI, Molecules, 22(27), p. 8079, 2022

DOI: 10.3390/molecules27228079

Links

Tools

Export citation

Search in Google Scholar

Thermodynamics and Kinetics of Electron Transfer of Electrode-Immobilized Small Laccase from Streptomyces coelicolor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The thermodynamic and kinetic properties for heterogeneous electron transfer (ET) were measured for the electrode-immobilized small laccase (SLAC) from Streptomyces coelicolor subjected to different electrostatic and covalent protein-electrode linkages, using cyclic voltammetry. Once immobilized electrostatically onto a gold electrode using mixed carboxyl- and hydroxy-terminated alkane-thiolate SAMs or covalently exploiting the same SAM subjected to N-hydroxysuccinimide+1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS-EDC) chemistry, the SLAC-electrode electron flow occurs through the T1 center. The E°′ values (from +0.2 to +0.1 V vs. SHE at pH 7.0) are lower by more than 0.2 V compared to the protein either in solution or immobilized with different anchoring strategies using uncharged SAMs. For the present electrostatic and covalent binding, this effect can, respectively, be ascribed to the negative charge of the SAM surfaces and to deletion of the positive charge of Lys/Arg residues due to amide bond formation which both selectively stabilize the more positively charged oxidized SLAC. Observation of enthalpy/entropy compensation within the series indicates that the immobilized proteins experience different reduction-induced solvent reorganization effects. The E°′ values for the covalently attached SLAC are sensitive to three acid base equilibria, with apparent pKa values of pKa1ox = 5.1, pKa1red = 7.5, pKa2ox = 8.4, pKa2red = 10.9, pKa2ox = 8.9, pKa2red = 11.3 possibly involving one residue close to the T1 center and two residues (Lys and/or Arg) along with moderate protein unfolding, respectively. Therefore, the E°′ value of immobilized SLAC turns out to be particularly sensitive to the anchoring mode and medium conditions.