Published in

Oxford University Press, Journal of Experimental Botany, 18(74), p. 5881-5895, 2023

DOI: 10.1093/jxb/erad298

Links

Tools

Export citation

Search in Google Scholar

Strigolactones promote the localization of the ABA exporter ABCG25 at the plasma membrane in root epidermal cells of Arabidopsis thaliana

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The phytohormones strigolactones crosstalk with abscisic acid (ABA) in acclimation to osmotic stress, as ascertained in leaves. However, our knowledge about underground tissues is limited, and lacking in Arabidopsis: whether strigolactones affect ABA transport across plasma membranes has never been addressed. We evaluated the effect of strigolactones on the localization of ATP BINDING CASSETTE G25 (ABCG25), an ABA exporter in Arabidopsis thaliana. Wild-type, strigolactone-insensitive, and strigolactone-depleted seedlings expressing a green fluorescent protein:ABCG25 construct were treated with ABA or strigolactones, and green fluorescent protein was quantified by confocal microscopy in different subcellular compartments of epidermal root cells. We show that strigolactones promote the localization of an ABA transporter at the plasma membrane by enhancing its endosomal recycling. Genotypes altered in strigolactone synthesis or perception are not impaired in ABCG25 recycling promotion by ABA, which acts downstream or independent of strigolactones in this respect. Additionally, we confirm that osmotic stress decreases strigolactone synthesis in A. thaliana root cells, and that this decrease may support local ABA retention under low water availability by allowing ABCG25 internalization. Thus, we propose a new mechanism for ABA homeostasis regulation in the context of osmotic stress acclimation: the fine-tuning by strigolactones of ABCG25 localization in root cells.