Published in

Nature Research, Nature Genetics, 10(44), p. 1152-1155, 2012

DOI: 10.1038/ng.2386

Links

Tools

Export citation

Search in Google Scholar

Mutations in ABCD4 cause a new inborn error of vitamin B(12) metabolism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inherited disorders of vitamin B(12) (cobalamin) have provided important clues to how this vitamin, which is essential for hematological and neurological function, is transported and metabolized. We describe a new disease that results in failure to release vitamin B(12) from lysosomes, which mimics the cblF defect caused by LMBRD1 mutations. Using microcell-mediated chromosome transfer and exome sequencing, we identified causal mutations in ABCD4, a gene that codes for an ABC transporter, which was previously thought to have peroxisomal localization and function. Our results show that ABCD4 colocalizes with the lysosomal proteins LAMP1 and LMBD1, the latter of which is deficient in the cblF defect. Furthermore, we show that mutations altering the putative ATPase domain of ABCD4 affect its function, suggesting that the ATPase activity of ABCD4 may be involved in intracellular processing of vitamin B(12).