Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Computational Intelligence and Neuroscience, (2022), p. 1-14, 2022

DOI: 10.1155/2022/6241373

Links

Tools

Export citation

Search in Google Scholar

N-GPETS: Neural Attention Graph-Based Pretrained Statistical Model for Extractive Text Summarization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The extractive summarization approach involves selecting the source document’s salient sentences to build a summary. One of the most important aspects of extractive summarization is learning and modelling cross-sentence associations. Inspired by the popularity of Transformer-based Bidirectional Encoder Representations (BERT) pretrained linguistic model and graph attention network (GAT) having a sophisticated network that captures intersentence associations, this research work proposes a novel neural model N-GPETS by combining heterogeneous graph attention network with BERT model along with statistical approach using TF-IDF values for extractive summarization task. Apart from sentence nodes, N-GPETS also works with different semantic word nodes of varying granularity levels that serve as a link between sentences, improving intersentence interaction. Furthermore, proposed N-GPETS becomes more improved and feature-rich by integrating graph layer with BERT encoder at graph initialization step rather than employing other neural network encoders such as CNN or LSTM. To the best of our knowledge, this work is the first attempt to combine the BERT encoder and TF-IDF values of the entire document with a heterogeneous attention graph structure for the extractive summarization task. The empirical outcomes on benchmark news data sets CNN/DM show that the proposed model N-GPETS gets favorable results in comparison with other heterogeneous graph structures employing the BERT model and graph structures without the BERT model.