Published in

MDPI, Microorganisms, 12(10), p. 2313, 2022

DOI: 10.3390/microorganisms10122313

Links

Tools

Export citation

Search in Google Scholar

Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

There is a wide range of algae species originating from a variety of freshwater and saltwater habitats. These organisms form nutritional organic products via photosynthesis from simple inorganic substances such as carbon dioxide. Ruminants can utilize the non-protein nitrogen (N) and the cell walls in algae, along with other constituents such as minerals and vitamins. Over recent decades, awareness around climate change has generated new interest into the potential of algae to suppress enteric methane emissions when consumed by ruminants and their potential to sequester atmospheric carbon dioxide. Despite the clear potential benefits, large-scale algae-livestock feedstuff value chains have not been established due to the high cost of production, processing and transport logistics, shelf-life and stability of bioactive compounds and inconsistent responses by animals under controlled experiments. It is unlikely that algal species will become viable ingredients in extensive grazing systems unless the cost of production and practical systems for the processing, transport and feeding are developed. The algae for use in ruminant nutrition may not necessarily require the same rigorous control during the production and processing as would for human consumption and they could be grown in remote areas or in marine environments, minimizing competition with cropping, whilst still generating high value biomass and capturing important amounts of atmospheric carbon. This review will focus on single-cell algal species and the opportunistic use of algal by-products and on-site production.