Published in

MDPI, Remote Sensing, 23(14), p. 5914, 2022

DOI: 10.3390/rs14235914

Links

Tools

Export citation

Search in Google Scholar

Experimental Tests for Fluorescence LIDAR Remote Sensing of Submerged Plastic Marine Litter

Journal article published in 2022 by Lorenzo Palombi ORCID, Valentina Raimondi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Marine plastic litter has become a global challenge, affecting all regions of the planet, with massive plastic input to the marine environment every year. Novel remote sensing methods can greatly contribute to face this complex issue with their ability to provide large-scale data. Here we present experimental tests exploring the potential of the hyperspectral fluorescence LIDAR technique for the detection and characterization of plastics when plunged into a layer of natural water. The experiments were carried out in the laboratory by using an in-house developed fluorescence hyperspectral LIDAR with 355 nm excitation from a distance of 11 m on weathered commercial plastic samples plunged into natural water. Results showed the capability of the technique to detect the fluorescence features of several types of plastics, also when plunged into water, and to decouple it from the fluorescence due to colored dissolved organic matter and from Raman scattering due to water molecules. Discrimination of plastics against other marine debris, e.g., vegetation and wood, has also been discussed. The study lays a basis for fluorescence LIDAR remote sensing of plastics in marine environment and paves the way to the detection of MPL also in conditions (e.g., submerged or transparent plastics) that are likely to be challenging by using other passive remote sensing techniques.