Published in

MDPI, Cancers, 23(14), p. 5804, 2022

DOI: 10.3390/cancers14235804

Links

Tools

Export citation

Search in Google Scholar

Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The lack of a consistent MRI radiomic signature, partly due to the multitude of initial feature analyses, limits the widespread clinical application of radiomics for the discrimination of salivary gland tumors (SGTs). This study aimed to identify the optimal radiomics feature category and MRI sequence for characterizing SGTs, which could serve as a step towards obtaining a consensus on a radiomics signature. Preliminary radiomics models were built to discriminate malignant SGTs (n = 34) from benign SGTs (n = 57) on T1-weighted (T1WI), fat-suppressed (FS)-T2WI and contrast-enhanced (CE)-T1WI images using six feature categories. The discrimination performances of these preliminary models were evaluated using 5-fold-cross-validation with 100 repetitions and the area under the receiver operating characteristic curve (AUC). The differences between models’ performances were identified using one-way ANOVA. Results show that the best feature categories were logarithm for T1WI and CE-T1WI and exponential for FS-T2WI, with AUCs of 0.828, 0.754 and 0.819, respectively. These AUCs were higher than the AUCs obtained using all feature categories combined, which were 0.750, 0.707 and 0.774, respectively (p < 0.001). The highest AUC (0.846) was obtained using a combination of T1WI + logarithm and FS-T2WI + exponential features, which reduced the initial features by 94.0% (from 1015 × 3 to 91 × 2). CE-T1WI did not improve performance. Using one feature category rather than all feature categories combined reduced the number of initial features without compromising radiomic performance.