Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Letters, 2(940), p. L28, 2022

DOI: 10.3847/2041-8213/aca28b

Links

Tools

Export citation

Search in Google Scholar

Using Anisotropies as a Forensic Tool for Decoding Supernova Remnants

Journal article published in 2022 by Abigail Polin ORCID, Paul Duffell ORCID, Dan Milisavljevic ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a method for analyzing supernova remnants (SNRs) by diagnosing the drivers responsible for structure at different angular scales. First, we perform a suite of hydrodynamic models of the Rayleigh–Taylor instability (RTI) as a supernova (SN) collides with its surrounding medium. Using these models we demonstrate how power spectral analysis can be used to attribute which scales in an SNR are driven by RTI and which must be caused by intrinsic asymmetries in the initial explosion. We predict the power spectrum of turbulence driven by RTI and identify a dominant angular mode that represents the largest scale that efficiently grows via RTI. We find that this dominant mode relates to the density scale height in the ejecta, and therefore reveals the density profile of the SN ejecta. If there is significant structure in an SNR on angular scales larger than this mode, then it is likely caused by anisotropies in the explosion. Structure on angular scales smaller than the dominant mode exhibits a steep scaling with wavenumber, possibly too steep to be consistent with a turbulent cascade, and therefore might be determined by the saturation of RTI at different length scales (although systematic 3D studies are needed to investigate this). We also demonstrate, consistent with previous studies, that this power spectrum is independent of the magnitude and length scales of perturbations in the surrounding medium and therefore this diagnostic is unaffected by “clumpiness” in the circumstellar medium.