Published in

Canadian Science Publishing, Applied Physiology, Nutrition, and Metabolism, 1(47), p. 75-82, 2022

DOI: 10.1139/apnm-2021-0196

Links

Tools

Export citation

Search in Google Scholar

Blood withdrawal acutely impairs cardiac filling, output and aerobic capacity in proportion to induced hypovolemia in middle-aged and older women

Journal article published in 2022 by Candela Diaz-Canestro ORCID, Brandon Pentz, Arshia Sehgal, David Montero
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Blood donation entails acute reductions of cardiorespiratory fitness in healthy men. Whether these effects can be extrapolated to blood donor populations comprising women remains uncertain. The purpose of this study was to comprehensively assess the acute impact of blood withdrawal on cardiac function, central hemodynamics and aerobic capacity in women throughout the mature adult lifespan. Transthoracic echocardiography and O2 uptake were assessed at rest and throughout incremental exercise (cycle ergometry) in healthy women (n = 30, age: 47–77 yr). Left ventricular end-diastolic volume (LVEDV), stroke volume (SV), cardiac output (Q̇) and peak O2 uptake (V̇O2peak), and blood volume (BV) were determined with established methods. Measurements were repeated following a 10% reduction of BV within a week period. Individuals were non-smokers, non-obese and moderately fit (V̇O2peak = 31.4 ± 7.3 mL·min–1·kg–1). Hematocrit and BV ranged from 38.0 to 44.8% and from 3.8 to 6.6 L, respectively. The standard 10% reduction in BV resulted in 0.5 ± 0.1 L withdrawal of blood, which did not alter hematocrit (P = 0.953). Blood withdrawal substantially reduced cardiac LVEDV and SV at rest as well as during incremental exercise (≥10% decrements, P ≤ 0.009). Peak Q̇ was proportionally decreased after blood withdrawal (P < 0.001). Blood withdrawal induced a 10% decrement in V̇O2peak (P < 0.001). In conclusion, blood withdrawal impairs cardiac filling, Q̇ and aerobic capacity in proportion to the magnitude of hypovolemia in healthy mature women. Novelty: The filling of the heart and therefore cardiac output are impaired by blood withdrawal in women. Oxygen delivery and aerobic capacity are reduced in proportion to blood withdrawal.