Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Batteries, 12(8), p. 263, 2022

DOI: 10.3390/batteries8120263

Links

Tools

Export citation

Search in Google Scholar

Nanostructured Manganese Dioxide for Hybrid Supercapacitor Electrodes

Journal article published in 2022 by Jon Rodriguez-Romero, Idoia Ruiz de Larramendi ORCID, Eider Goikolea
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hybrid supercapacitors, as emerging energy storage devices, have gained much attention in recent years due to their high energy density, fast charge/discharge and long cyclabilities. Among the wide range of systems covered by this topic, low cost, environmental friendliness and high power provide MnO2 with great characteristics to be a competitive candidate. The present work reports a hybrid aqueous supercapacitor system using a commercial activated carbon as the negative electrode and a synthesized manganese dioxide as the positive electrode. Two manganese dioxide polymorphs (α-MnO2 and δ-MnO2) were tested in different neutral and basic aqueous electrolytes. In this way, full cell systems that reached an energy density of 15.6 Wh kg−1 at a power density of 1 kW kg−1 were achieved. The electrode–electrolyte combination explored in this study exhibits excellent performance without losing capacity after 5000 charge/discharge cycles, leading to a promising approach towards more sustainable, high-performance energy storage systems.