Published in

American Chemical Society, Environmental Science and Technology, 7(46), p. 3744-3752, 2012

DOI: 10.1021/es203708w

Links

Tools

Export citation

Search in Google Scholar

Multivariate statistical methods for the environmental forensic classification of coal tars from former manufactured gas plants

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Compositional disparity within a set of 23 coal tar samples (obtained from 15 different former manufactured gas plants) was compared and related to differences between historical on-site manufacturing processes. Samples were prepared using accelerated solvent extraction prior to analysis by two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. A suite of statistical techniques, including univariate analysis, hierarchical cluster analysis, two-dimensional cluster analysis, and principal component analysis (PCA), were investigated to determine the optimal method for source identification of coal tars. The results revealed that multivariate statistical analysis (namely, PCA of normalized, preprocessed data) has the greatest potential for environmental forensic source identification of coal tars, including the ability to predict the processes used to create unknown samples. © 2012 American Chemical Society.