Published in

Nature Research, communications medicine, 1(2), 2022

DOI: 10.1038/s43856-022-00213-5

Links

Tools

Export citation

Search in Google Scholar

Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background SARS-CoV-2 Omicron variants are highly resistant to vaccine-induced immunity and human monoclonal antibodies. Methods We previously reported that two nanobodies, P17 and P86, potently neutralize SARS-CoV-2 VOCs. In this study, we modified these nanobodies into trimers, called TP17 and TP86 and tested their neutralization activities against Omicron BA.1 and subvariant BA.2 using pseudovirus assays. Next, we used TP17 and TP86 nanobody cocktail to treat ACE2 transgenic mice infected with lethal dose of SARS-CoV-2 strains, original, Delta and Omicron BA.1. Results Here, we demonstrate that a novel nanobody TP86 potently neutralizes both BA.1 and BA.2 Omicron variants, and that the TP17 and TP86 nanobody cocktail broadly neutralizes in vitro all VOCs as well as original strain. Furthermore, intratracheal administration of this nanobody cocktail suppresses weight loss and prolongs survival of human ACE2 transgenic mice infected with SARS-CoV-2 strains, original, Delta and Omicron BA.1. Conclusions Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice.