Nature Research, communications materials, 1(3), 2022
DOI: 10.1038/s43246-022-00316-5
Full text: Download
AbstractThe geometric phase of an electronic wave function, also known as Berry phase, is the fundamental basis of the topological properties in solids. This phase can be tuned by modulating the band structure of a material, providing a way to drive a topological phase transition. However, despite significant efforts in designing and understanding topological materials, it remains still challenging to tune a given material across different topological phases while tracing the impact of the Berry phase on its quantum transport properties. Here, we report these two effects in a magnetotransport study of ZrTe5. By tuning the band structure with uniaxial strain, we use quantum oscillations to directly map a weak-to-strong topological insulator phase transition through a gapless Dirac semimetal phase. Moreover, we demonstrate the impact of the strain-tunable spin-dependent Berry phase on the Zeeman effect through the amplitude of the quantum oscillations. We show that such a spin-dependent Berry phase, largely neglected in solid-state systems, is critical in modeling quantum oscillations in Dirac bands of topological materials.