Published in

Human Kinetics, International Journal of Sports Physiology and Performance, p. 1-8, 2024

DOI: 10.1123/ijspp.2023-0256

Links

Tools

Export citation

Search in Google Scholar

Effect of Acute Sodium Bicarbonate and Caffeine Coingestion on Repeated-Sprint Performance in Recreationally Trained Individuals: A Randomized Controlled Trial

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction: The acute and isolated ingestion of sodium bicarbonate (NaHCO3) and caffeine (CAF) improves performance and delays fatigue in high-intensity tasks. However, it remains to be elucidated if the coingestion of both dietary supplements stimulates a summative ergogenic effect. This study aimed to examine the effect of the acute coingestion of NaHCO3 and CAF on repeated-sprint performance. Methods: Twenty-five trained participants (age: 23.3 [4.0] y; sex [female/male]: 12/13; body mass: 69.6 [12.5] kg) participated in a randomized, double-blind, placebo (PLA) -controlled, crossover study. Participants were assigned to 4 conditions: (1) NaHCO3 + CAF, (2) NaHCO3, (3) CAF, or (4) PLA. Thus, they ingested 0.3 g/kg of NaHCO3, 3 mg/kg of CAF, or PLA. Then, participants performed 4 Wingate tests (Wt), consisting of a 30-second all-out sprint against an individualized resisted load, interspersed by a 1.5-minute rest period between sprints. Results: Peak (Wpeak) and mean (Wmean) power output revealed a supplement and sprint interaction effect (P = .009 and P = .049, respectively). Compared with PLA, NaHCO3 + CAF and NaHCO3 increased Wpeak performance in Wt 3 (3%, P = .021) and Wt 4 (4.5%, P = .047), while NaHCO3 supplementation increased mean power performance in Wt 3 (4.2%, P = .001). In Wt 1, CAF increased Wpeak (3.2%, P = .054) and reduced time to Wpeak (−8.5%; P = .008). Plasma lactate showed a supplement plus sprint interaction (P < .001) when NaHCO3 was compared with CAF (13%, P = .031) and PLA (23%, P = .021). Conclusion: To summarize, although the isolated ingestion of CAF and NaHCO3 improved repeated-sprint performance, the coingestion of both supplements did not stimulate a synergic ergogenic effect.