Published in

Nature Research, communications materials, 1(3), 2022

DOI: 10.1038/s43246-022-00321-8

Links

Tools

Export citation

Search in Google Scholar

Magnon-cooparons in magnet-superconductor hybrids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGeneration and detection of spinful Cooper pairs in conventional superconductors has been intensely pursued by designing increasingly complex magnet-superconductor hybrids. Here, we demonstrate theoretically that magnons with nonzero wavenumbers universally induce a cloud of spinful triplet Cooper pairs around them in an adjacent conventional superconductor. The resulting composite quasiparticle, termed magnon-cooparon, consists of a spin flip in the magnet screened by a cloud of the spinful superfluid condensate. Thus, it inherits a large effective mass, which can be measured experimentally. Furthermore, we demonstrate that two magnetic wires deposited on a superconductor serve as a controllable magnonic directional coupler mediated by the nonlocal and composite nature of magnon-cooparons. Our analysis predicts a quasiparticle that enables generation, control, and use of spinful triplet Cooper pairs in the simplest magnet-superconductor heterostructures.