Published in

MDPI, Polymers, 23(14), p. 5246, 2022

DOI: 10.3390/polym14235246

Links

Tools

Export citation

Search in Google Scholar

Impact of Non-Accelerated Aging on the Properties of Parylene C

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The polymer Parylene combines a variety of excellent properties and, hence, is an object of intensive research for packaging applications, such as the direct encapsulation of medical implants. Moreover, in the past years, an increasing interest for establishing new applications for Parylene is observed. These include the usage of Parylene as a flexible substrate, a dielectric, or a material for MEMS, e.g., a bonding adhesive. The increasing importance of Parylene raises questions regarding the long-term reliability and aging of Parylene as well as the impact of the aging on the Parylene properties. Within this paper, we present the first investigations on non-accelerated Parylene C aging for a period of about five years. Doing so, free-standing Parylene membranes were fabricated to investigate the barrier properties, the chemical stability, as well as the optical properties of Parylene in dependence on different post-treatments to the polymer. These properties were found to be excellent and with only a minor age-related impact. Additionally, the mechanical properties, i.e., the Young’s modulus and the hardness, were investigated via nano-indentation over the same period of time. For both mechanical properties only, minor changes were observed. The results prove that Parylene C is a highly reliable polymer for applications that needs a high long-term stability.