Published in

Springer Nature [academic journals on nature.com], Nature Cardiovascular Research, 2(1), p. 132-141, 2022

DOI: 10.1038/s44161-021-00017-1

Links

Tools

Export citation

Search in Google Scholar

Foudroyant cerebral venous (sinus) thrombosis triggered through CLEC-2 and GPIIb/IIIa dependent platelet activation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCerebral venous (sinus) thrombosis (CVT) is an unusual manifestation of venous thrombosis causing severe neurological impairment and seizures1,2. Molecular mechanisms underlying CVT, potentially involving pathological platelet activation, are unknown. Here we show that antibody-(INU1-fab)-induced cooperative signaling of two platelet receptors, C-type lectin-like receptor-2 (CLEC-2) and GPIIb/IIIa, triggers within minutes a CVT-like thrombotic syndrome in mice, characterized by tonic–myoclonic seizures, platelet consumption and death. Brain autopsy showed thrombi mainly in the cortical venules, but no intracranial hemorrhages or edema formation. Transcranial intravital microscopy revealed rapidly progressing thrombosis in the superior sagittal sinus, a main site of CVT in humans. Interfering with CLEC-2 signaling or inhibition of GPIIb/IIIa completely blocked platelet activation and CVT. Blocking GPIIb/IIIa after onset of neurological symptoms protected mice from platelet consumption, CVT and death, which was not seen after treatment with heparin. These results point to aberrant platelet activation as a major trigger of CVT and potential target for treatment.