Published in

MDPI, Applied Sciences, 23(12), p. 12380, 2022

DOI: 10.3390/app122312380

Links

Tools

Export citation

Search in Google Scholar

Exploiting Stacked Autoencoders for Improved Sentiment Analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sentiment analysis is an ongoing research field within the discipline of data mining. The majority of academics employ deep learning models for sentiment analysis due to their ability to self-learn and process vast amounts of data. However, the performance of deep learning models depends on the values of the hyperparameters. Determining suitable values for hyperparameters is a cumbersome task. The goal of this study is to increase the accuracy of stacked autoencoders for sentiment analysis using a heuristic optimization approach. In this study, we propose a hybrid model GA(SAE)-SVM using a genetic algorithm (GA), stacked autoencoder (SAE), and support vector machine (SVM) for fine-grained sentiment analysis. Features are extracted using continuous bag-of-words (CBOW), and then input into the SAE. In the proposed GA(SAE)-SVM, the hyperparameters of the SAE algorithm are optimized using GA. The features extracted by SAE are input into the SVM for final classification. A comparison is performed with a random search and grid search for parameter optimization. GA optimization is faster than grid search, and selects more optimal values than random search, resulting in improved accuracy. We evaluate the performance of the proposed model on eight benchmark datasets. The proposed model outperformed when compared to the baseline and state-of-the-art techniques.