Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 15(114), p. 4964-4972, 2010

DOI: 10.1021/jp9104954

Links

Tools

Export citation

Search in Google Scholar

Synthesis and characterization of the ground and excited states of tripodal-like oligothienyl-imidazoles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Six new thiophene oligomers, here designated as tripodal-like oligothienyl-imidazoles, were synthesized and have been investigated in ethanol solution at room and low temperature. The oligomers bear a common core where two or more thiophenes are linked to one or more imidazole units that further links through its alpha-position to a different number of incremental thiophene units. The study involves a comprehensive spectral and photophysical investigation where the properties of the singlet and triplet states have been investigated regarding absorption, fluorescence and phosphorescence, transient triplet-triplet absorption together with all relevant quantum yields (fluorescence, phi(F), internal conversion, phi(IC), intersystem crossing, phi(T,) and singlet oxygen, phi(Delta)) and lifetimes. In addition, density functional theory quantum chemical calculations were performed to gain a detailed understanding of the molecular geometry and optical properties of the investigated oligomers. From the overall data, the radiative (k(F)) and radiationless (k(NR), k(IC), and k(ISC)) rate constants have been determined and it is shown that, in contrast with the parent oligothiophenes, the radiative competes with the radiationless deactivation channels. The results show that, by comparison with the oligothiophene counterparts, there is an augment of the relative contributions of the internal conversion and fluorescence processes relative to the S(1)~~-->T(1) intersystem crossing. Phosphosphorescence emission was found for the simplest member of the investigated compounds with a low quantum yield (phi(Ph) = 0.009) and a lifetime of 8 micros. The data also show that the introduction of a 4,5-dithienyl-imidazole moiety in a bi- or terthiophene oligomer results in, respectively, a 20-fold and a 3-fold increase of the fluorescence quantum yield relative to their oligothiophene counterparts. The synergy of the structural and photophysical properties, combined with the exceptional thermal stabilities, opens new perspectives related to the copolymerization of oligothiophenes with thienyl-imidazole units with potential application as organic light emitting devices.