Published in

American Association of Immunologists, The Journal of Immunology, 1(209), p. 157-170, 2022

DOI: 10.4049/jimmunol.2200192

Links

Tools

Export citation

Search in Google Scholar

Spinal Cord Injury Impairs Lung Immunity in Mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Pulmonary infection is a leading cause of morbidity and mortality after spinal cord injury (SCI). Although SCI causes atrophy and dysfunction in primary and secondary lymphoid tissues with a corresponding decrease in the number and function of circulating leukocytes, it is unknown whether this SCI-dependent systemic immune suppression also affects the unique tissue-specific antimicrobial defense mechanisms that protect the lung. In this study, we tested the hypothesis that SCI directly impairs pulmonary immunity and subsequently increases the risk for developing pneumonia. Using mouse models of severe high-level SCI, we find that recruitment of circulating leukocytes and transcriptional control of immune signaling in the lung is impaired after SCI, creating an environment that is permissive for infection. Specifically, we saw a sustained loss of pulmonary leukocytes, a loss of alveolar macrophages at chronic time points postinjury, and a decrease in immune modulatory genes, especially cytokines, needed to eliminate pulmonary infections. Importantly, this injury-dependent impairment of pulmonary antimicrobial defense is only partially overcome by boosting the recruitment of immune cells to the lung with the drug AMD3100, a Food and Drug Administration–approved drug that mobilizes leukocytes and hematopoietic stem cells from bone marrow. Collectively, these data indicate that the immune-suppressive effects of SCI extend to the lung, a unique site of mucosal immunity. Furthermore, preventing lung infection after SCI will likely require novel strategies, beyond the use of orthodox antibiotics, to reverse or block tissue-specific cellular and molecular determinants of pulmonary immune surveillance.