Published in

Optica, Optics Express, 6(31), p. 9437, 2023

DOI: 10.1364/oe.476440

Links

Tools

Export citation

Search in Google Scholar

Efficient room-temperature molecular single-photon sources for quantum key distribution

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantum key distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way, exploiting quantum physics. While current QKD systems are mainly based on attenuated laser pulses, deterministic single-photon sources could give concrete advantages in terms of secret key rate (SKR) and security owing to the negligible probability of multi-photon events. Here, we introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785 nm. With an estimated maximum SKR of 0.5 Mbps, our solution paves the way for room-temperature single-photon sources for quantum communication protocols.