Published in

European Respiratory Society, European Respiratory Journal, 5(60), p. 2200176, 2022

DOI: 10.1183/13993003.00176-2022

10.01 - Respiratory infections and bronchiectasis, 2022

DOI: 10.1183/13993003.congress-2022.1555

Links

Tools

Export citation

Search in Google Scholar

Genome sequencing reveals underdiagnosis of primary ciliary dyskinesia in bronchiectasis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundBronchiectasis can result from infectious, genetic, immunological and allergic causes. 60–80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis.MethodsThis observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK.ResultsPathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5–10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing.ConclusionsPCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.