Published in

MDPI, AgriEngineering, 4(4), p. 1184-1199, 2022

DOI: 10.3390/agriengineering4040074

Links

Tools

Export citation

Search in Google Scholar

An All-in-One Concept of a Mobile System for On-Farm Swine Depopulation, Pathogen Inactivation, Off-Site Carcass Disposal, and Biosecure Cleanup

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Infectious animal diseases can cause severe mortality on infected farms. An outbreak challenges the system and forces difficult decisions to stop the disease progression. We propose an ‘all-in-one’ concept of a mobile system for on-farm swine depopulation and pathogen inactivation. The system uses vaporized CO2 followed by heat treatment, broadening options for off-site carcass disposal and cleanup. A direct-fired heater supplies heat into the insulated trailer to reach and maintain the inactivation temperature for targeted pathogens. We developed a user-friendly model based on engineering principles for estimating site- and scenario-specific CO2 amounts and times required to inactivate targeted pathogens. Multipoint CO2 injection and improved distribution to animals follow the plug-flow reactor air replacement model. The model illustrates the depopulation and inactivation of two diseases, African swine fever (ASF) and the porcine reproductive and respiratory syndrome (PRRS) viruses. The model allows for dump trailer size, pig number, weights, and environmental conditions input. Model outputs provide users with practical information about the required CO2 injection rate, temperature setpoints, and times to effectively depopulate and inactivate pathogens in carcasses. The concept could be adopted for a routine or a mass depopulation/treatment/disposal with a single or fleet of ‘all-in-one’ units.