Published in

Wiley, Advanced Materials Technologies, 4(7), 2021

DOI: 10.1002/admt.202100447

Links

Tools

Export citation

Search in Google Scholar

Multifunctional, Bioinspired, and Moisture Responsive Graphene Oxide/Tapioca Starch Nanocomposites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractActuators triggered by water evaporation have found potential applications in a wide range of emerging fields, including smart structures, power generators, artificial muscles, and soft robots. In addition to poor mechanical performance, conventional actuators raise major economic and environmental concerns due to their expensive and complex synthesis processes with hazardous chemicals and high ecological footprint. Herein, a nacre‐inspired moisture‐responsive actuator is fabricated using graphene oxide (GO) and tapioca starch (TS), a water‐soluble, low‐cost, and eco‐friendly natural polymer. The resultant TS/GO nanocomposite film has excellent mechanical properties and exhibits rapid and autonomous locomotion under moisture attack. Moreover, the actuator demonstrates a bending speed of ≈60° s−1 and has the potential to lift a load up to ten times its own weight. Based on these features, a novel moisture detection alarm system with control and operating circuits is assembled using the TS/GO film. Furthermore, the TS/GO actuator shows that it is capable of mimicking biological structures like flowers and can undergo locomotion even for nonwater vapors like isopropyl alcohol, ethanol, and chloroform.