Published in

Wiley, Advanced Functional Materials, 2023

DOI: 10.1002/adfm.202309706

Links

Tools

Export citation

Search in Google Scholar

Recent Advances in Liquid Metals for Rechargeable Batteries

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLiquid metals (LMs) with their unique properties are considered for a range of applications such as energy storage, catalysis, electronics, and biomedical engineering. Recently, the introduction of LMs into rechargeable batteries has not only proven to improve overall performance but also overcome commonly known challenges like low energy density, material degradation, interface failure, and poor system integrity. Specifically, room‐temperature LMs such as gallium (Ga), Ga‐based alloys (GBAs), and metallic mercury (Hg) are promising candidates in rechargeable batteries due to their low viscosity, high electrical and thermal conductivity, excellent deformability, superior electrochemical properties, and self‐healing capability. Herein, a review of recent advances in LMs for rechargeable batteries, starting with a brief introduction to LMs fundamentals and their properties is presented. Then, an extensive literature review is carried out to summarize the LMs’ advances in addressing existing challenges of lithium‐ion, lithium‐metal, lithium–sulfur, and other rechargeable batteries. The current state of the art and future perspective are also put forward. It is believed that highlighting potential developments pertaining to LMs can fascinate researchers in exploring them for future rechargeable batteries.