Published in

MDPI, Polymers, 24(14), p. 5507, 2022

DOI: 10.3390/polym14245507

Links

Tools

Export citation

Search in Google Scholar

Recycling of Bottle Grade PET: Influence of HDPE Contamination on the Microstructure and Mechanical Performance of 3D Printed Parts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

As part of a project that aims to provide people with disabilities with simple assistive devices in Colombia, the possibility of creating a PET filament that can be printed by Fused Deposition Modelling (FDM) from beverage bottle waste was investigated, with the aim to remain as simple as possible in terms of plastic collection, sorting, processing, and printing. Recycled PET filaments were thus produced by extrusion from collected PET bottles, with the potential addition of HDPE, which comes from caps and rings. The microstructure, mechanical performance, and printing quality of parts produced with these filaments were investigated in comparison to commercial PET virgin and recycled filaments. HDPE presence as an immiscible blend did not affect the ease of extrusion or the quality of the printing, which were all satisfactory. In some conditions, the addition of 5 wt% of HDPE to recycled PET had a toughening effect on otherwise brittle samples. This behavior was attributed to the presence of elongated HDPE inclusions resulting from shear forces induced by the layer-by-layer printing, provided that the interface temperature remained high between layer depositions. This confirms that the mechanical performance of recycled PET is very sensitive to the processing conditions, especially in the case of 3D printing. Nonetheless, this low-cost process that did not require sophisticated compatibilization schemes allowed for the printing of parts with mechanical properties comparable to those obtained with high purity, commercially recycled filaments, opening interesting perspectives for a low-cost PET recycling process.