Nature Research, Nature Structural and Molecular Biology, 9(30), p. 1346-1356, 2023
DOI: 10.1038/s41594-023-01072-x
Full text: Unavailable
AbstractTelomeres replicated by leading-strand synthesis lack the 3′ overhang required for telomere protection. Surprisingly, resection of these blunt telomeres is initiated by the telomere-specific 5′ exonuclease Apollo rather than the Mre11–Rad50–Nbs1 (MRN) complex, the nuclease that acts at DNA breaks. Without Apollo, leading-end telomeres undergo fusion, which, as demonstrated here, is mediated by alternative end joining. Here, we show that DNA-PK and TRF2 coordinate the repression of MRN at blunt mouse telomeres. DNA-PK represses an MRN-dependent long-range resection, while the endonuclease activity of MRN–CtIP, which could cleave DNA-PK off of blunt telomere ends, is inhibited in vitro and in vivo by the iDDR of TRF2. AlphaFold-Multimer predicts a conserved association of the iDDR with Rad50, potentially interfering with CtIP binding and MRN endonuclease activation. We propose that repression of MRN-mediated resection is a conserved aspect of telomere maintenance and represents an ancient feature of DNA-PK and the iDDR.