Published in

MDPI, Catalysts, 12(12), p. 1676, 2022

DOI: 10.3390/catal12121676

Links

Tools

Export citation

Search in Google Scholar

Integrated Adsorption-Photocatalytic Decontamination of Oxytetracycline from Wastewater Using S-Doped TiO2/WS2/Calcium Alginate Beads

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Integrated wastewater treatment processes are needed due to the inefficient removal of emerging pharmaceuticals by single methods. Herein, an adsorbent-photocatalyst integrated material was fabricated by coupling calcium alginate with sulfur-doped TiO2/tungsten disulfide (S-TiO2/WS2/alginate beads) for the removal of oxytetracycline (OTC) from aqueous solution by an integrated adsorption-photocatalysis process. The semiconductor S-TiO2/WS2 hybrid photocatalyst was synthesized with a hydrothermal method, while the integrated adsorbent-photocatalyst S-TiO2/WS2/alginate beads were synthesized by blending S-TiO2/WS2 with sodium alginate using calcium chloride as a precipitating agent. The physicochemical characteristics of S-TiO2/WS2/alginate beads were analyzed using X-ray diffraction , scanning electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The integrated adsorption-photocatalysis process showed enhanced removal from 92.5 to 72%, with a rise in the OTC concentration from 10 to 75 mg/L respectively. The results demonstrated that the adsorption of OTC onto S-TiO2/WS2/alginate beads followed the Elovich kinetic model and Redlich–Peterson isotherm models. The formations of H-bonds, cation bridge bonding, and n-π electron donor-acceptor forces were involved in the adsorption of OCT onto S-TiO2/WS2/alginate beads. In the integrated adsorption-photocatalysis, surface-adsorbed OTC molecules were readily decomposed by the photogenerated active radical species (h⁺, O2•−, and HO•). The persulfate addition to the OTC solution further increased the photocatalysis efficacy due to the formation of additional oxidizing species (SO4•⁻, SO4⁻). Moreover, S-TiO2/WS2/alginate beads showed favorable efficiency and sustainability in OTC removal, approaching 78.6% after five cycles. This integrated adsorption-photocatalysis process offered significant insight into improving efficiency and reusability in water treatment.