Published in

Springer, Solar Physics, 6(298), 2023

DOI: 10.1007/s11207-023-02171-0

Links

Tools

Export citation

Search in Google Scholar

Automatic Burst Detection in Solar Radio Spectrograms Using Deep Learning: deARCE Method

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present in detail an automatic radio-burst detection system, based on the convolutional neural network, for use with any kind of solar spectrogram. A full methodology for model training, performance evaluation, and feedback to the model generator has been developed with special emphasis on i) robustness tests against stochastic and overfitting effects, ii) specific metrics adapted to the unbalanced nature of the solar-burst scenario, iii) tunable parameters for probability-threshold optimization, and iv) burst-coincidence cross match among e-Callisto stations and with external observatories (NOAA-SWPC). The resulting neural network configuration has been designed to accept data from observatories other than e-Callisto, either ground- or spacecraft-based. Typical False Negative and False Positive Scores in single-observatory mode are, respectively, in the 10 – 16% and 6 – 8% ranges, which improve further in cross-match mode. This mode includes new services (, ) allowing the end-user to check at a glance if a solar radio burst has taken place with a high level of confidence.