Published in

MDPI, Sensors, 1(23), p. 23, 2022

DOI: 10.3390/s23010023

Links

Tools

Export citation

Search in Google Scholar

Interrogation Method with Temperature Compensation Using Ultra-Short Fiber Bragg Gratings in Silica and Polymer Optical Fibers as Edge Filters

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of simpler and less bulky equipment, with a reliable performance and at relative low cost is increasingly important when assembling sensing configurations for a wide variety of applications. Based on this concept, this paper proposes a simple, efficient and relative low-cost fiber Bragg grating (FBG) interrogation solution using ultra-short FBGs (USFBGs) as edge filters. USFBGs with different lengths and reflection bandwidths were produced in silica optical fiber and in poly(methyl methacrylate) (PMMA) microstructured polymer optical fiber (mPOF), and by adjusting specific inscription parameters and the diffraction pattern, these gratings can present self-apodization and unique spectral characteristics suitable for filtering operations. In addition to being a cost-effective edge filter solution, USFBGs and standard uniform FBGs in silica fiber have similar thermal sensitivities, which results in a straightforward operation without complex equipment or calculations. This FBG interrogation configuration is also quite promising for dynamic measurements, and due to its multiplexing capabilities multiple USFBGs can be inscribed in the same optical fiber, allowing to incorporate several filters with identical or different spectral characteristics at specific wavelength regions in the same fiber, thus showing great potential to create and develop new sensing configurations.