Published in

Optica, Optics Express, 2(31), p. 3187, 2023

DOI: 10.1364/oe.478862

Links

Tools

Export citation

Search in Google Scholar

Millihertz magnetic resonance spectroscopy combining the heterodyne readout based on solid-spin sensors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The sensitivities of quantum sensing in metrology and spectroscopy are drastically influenced by the resolution of the frequency spectrum. However, the resolution is hindered by the decoherence effect between the sensor and the environment. Along these lines, the continue-wave optically detected magnetic resonance (CWODMR) method combined with the heterodyne readout was proposed to break the limitation of the sensor’s coherence time. The frequency of the magnetic field was swept to match the unknown signal, and the signal can be transformed to a real-time frequency-domain curve via the heterodyne readout, with a frequency resolution of 4.7 millihertz. Using the nitrogen-vacancy (NV) center ensemble in a diamond as the solid-spin sensors, it was demonstrated that the frequency resolution and precision could be improved proportionally to the low-pass filter parameters of Tc-1 and Tc-1.5, respectively. Furthermore, the introduced method performed the sensing of arbitrary audio signals with a sensitivity of 7.32 nT·Hz−1/2@10 kHz. Our generic approach can be extended to several fields, such as molecular structure determination and biomagnetic field detection, where high-fidelity detection properties across multiple frequency bands are required within small sensing volumes (∼ mm3).