Published in

Springer (part of Springer Nature), Cellulose, 3(18), p. 575-583

DOI: 10.1007/s10570-011-9531-1

Links

Tools

Export citation

Search in Google Scholar

Self-crosslinking of 2-hydroxypropyl-N-methylmorpholinium chloride cellulose fibres

Journal article published in 2011 by Merima Hasani ORCID, Gunnar Westman
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Crosslinking of cellulose fibres was obtained by inducing a substitution reaction in a cationic cellulose ether (NMM-cellulose) prepared by action of N-oxiranylmethyl-N-methylmorpholinium chloride. During the reaction the N-methylmorpholine moiety of the cellulosic ether acts as a leaving group facilitating a covalent bond formation between the ether substituent and a hydroxyl or other nucleophilic group present in the cellulose chain. In order to provide additional evidence of the suggested crosslinking route and investigate its possibilities, different reaction conditions have been investigated and assessed in terms of the obtained fibre properties. The crosslinked fibres were characterized by means of elemental analysis and structure accessibility studies, including accessibility to water, anions and nitrogen gas. According to these investigations heating at 105 A degrees C induces a significant crosslinking. Pre-treatment with acetone restricts it mainly to formation of intra-fibre crosslinks, whereas heating from water suppresses the reactivity but results nevertheless in highly crosslinked structure with both intra- and inter-fibre crosslinks involved.