Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Vehicular Technology, 8(60), p. 3814-3824, 2011

DOI: 10.1109/tvt.2011.2167362

Links

Tools

Export citation

Search in Google Scholar

Generic Ergodic Capacity Bounds for Fixed-Gain AF Dual-Hop Relaying Systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper elaborates on the ergodic capacity of fixed-gain amplify-and-forward (AF) dual-hop systems, which have recently attracted considerable research and industry interest. In particular, two novel capacity bounds that allow for fast and efficient computation and apply for nonidentically distributed hops are derived. More importantly, they are generic since they apply to a wide range of popular fading channel models. Specifically, the proposed upper bound applies to Nakagami-m, Weibull, and generalized-K fading channels, whereas the proposed lower bound is more general and applies to Rician fading channels. Moreover, it is explicitly demonstrated that the proposed lower and upper bounds become asymptotically exact in the high signal-to-noise ratio (SNR) regime. Based on our analytical expressions and numerical results, we gain valuable insights into the impact of model parameters on the capacity of fixed-gain AF dual-hop relaying systems.