Published in

MDPI, Nanomaterials, 1(13), p. 115, 2022

DOI: 10.3390/nano13010115

Links

Tools

Export citation

Search in Google Scholar

Bifunctional P-Containing RuO2 Catalysts Prepared from Surplus Ru Co-Ordination Complexes and Applied to Zn/Air Batteries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

An innovative synthetic route that involves the thermal treatment of selected Ru co−ordination complexes was used to prepare RuO2-based materials with catalytic activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions. Extensive characterization confirmed the presence of Ru metal and RuP3O9 in the materials, with an improved electrocatalytic performance obtained from calcinated [(RuCl2(PPh3)3]. A mechanistic approach for the obtention of such singular blends and for the synergetic contribution of these three species to electrocatalysis is suggested. Catalysts added to carbon−based electrodes were also tested in all−solid and flooded alkaline Zn/air batteries. The former displayed a specific discharge capacity of 10.5 A h g−1 at 250 mA g−1 and a power density of 4.4 kW kg−1 cm−2. Besides, more than 800 discharge/charge cycles were reached in the flooded alkaline Zn/air battery