Published in

MDPI, Galaxies, 1(11), p. 6, 2022

DOI: 10.3390/galaxies11010006

Links

Tools

Export citation

Search in Google Scholar

The ngEHT’s Role in Measuring Supermassive Black Hole Spins

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

While supermassive black-hole masses have been cataloged across cosmic time, only a few dozen of them have robust spin measurements. By extending and improving the existing Event Horizon Telescope (EHT) array, the next-generation Event Horizon Telescope (ngEHT) will enable multifrequency, polarimetric movies on event-horizon scales, which will place new constraints on the space-time and accretion flow. By combining this information, it is anticipated that the ngEHT may be able to measure tens of supermassive black-hole masses and spins. In this white paper, we discuss existing spin measurements and many proposed techniques with which the ngEHT could potentially measure spins of target supermassive black holes. Spins measured by the ngEHT would represent a completely new sample of sources that, unlike pre-existing samples, would not be biased towards objects with high accretion rates. Such a sample would provide new insights into the accretion, feedback, and cosmic assembly of supermassive black holes.