Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Pharmaceutics, 1(15), p. 102, 2022

DOI: 10.3390/pharmaceutics15010102

Links

Tools

Export citation

Search in Google Scholar

Diclofenac Loaded Biodegradable Nanoparticles as Antitumoral and Antiangiogenic Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cancer is identified as one of the main causes of death worldwide, and an effective treatment that can reduce/eliminate serious adverse effects is still an unmet medical need. Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has demonstrated promising antitumoral properties. However, the prolonged use of this NSAID poses several adverse effects. These can be overcome by the use of suitable delivery systems that are able to provide a controlled delivery of the payload. In this study, Diclofenac was incorporated into biodegradable polymeric nanoparticles based on PLGA and the formulation was optimized using a factorial design approach. A monodisperse nanoparticle population was obtained with a mean size of ca. 150 nm and negative surface charge. The release profile of diclofenac from the optimal formulation followed a prolonged release kinetics. Diclofenac nanoparticles demonstrated antitumoral and antiangiogenic properties without causing cytotoxicity to non-tumoral cells, and can be pointed out as a safe, promising and innovative nanoparticle-based formulation with potential antitumoral effects.