Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(516), p. 4862-4881, 2022

DOI: 10.1093/mnras/stac2524

Links

Tools

Export citation

Search in Google Scholar

A measurement of Hubble’s Constant using Fast Radio Bursts

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We constrain the Hubble constant H0 using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (‘Macquart’) relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DMhost), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localized to their host galaxies, and 60 unlocalized FRBs from Parkes and ASKAP, our best-fitting value of H0 is calculated to be $73_{-8}^{+12}$ km s−1 Mpc−1. Uncertainties in FRB energetics and DMhost produce larger uncertainties in the inferred value of H0 compared to previous FRB-based estimates. Using a prior on H0 covering the 67–74 km s−1 Mpc−1 range, we estimate a median ${\rm DM}_{\rm host}= 186_{-48}^{+59}\,{\rm pc \, cm^{-3}}$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be log10Emax$=41.26_{-0.22}^{+0.27}$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $γ =-0.95_{-0.15}^{+0.18}$. We demonstrate with a sample of 100 mock FRBs that H0 can be measured with an uncertainty of ±2.5 km s−1 Mpc−1, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses.