Published in

MDPI, Water, 8(14), p. 1307, 2022

DOI: 10.3390/w14081307

Links

Tools

Export citation

Search in Google Scholar

Numerical Simulation of Turbulent Flow in Bends and Confluences Considering Free Surface Changes Using the Volume of Fluid Method

Journal article published in 2022 by Rawaa Shaheed ORCID, Abdolmajid Mohammadian ORCID, Xiaohui Yan ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The impact of secondary flows on the flow velocity in open channel bends and confluences was simulated using three-dimensional (3D) numerical models. The Reynolds-averaged Navier–Stokes equation system was utilized as the governing equations and two different turbulence models were employed in this study: the standard k-ε model and the realizable k–ε model. In a recent study by the authors, the rigid lid approach was used, which does not allow for vertical displacement of the water surface. In this study, the simulation of free surface displacements was simulated using the volume of fluid free-surface tracking method. The numerical models were evaluated and validated by using the experimental data of a sharply curved channel and a confluent channel. The accuracies of the two turbulence models were evaluated and discussed. This study found that both models can satisfactorily reproduce the experimental data. However, the standard k–ε model performed better for the curved channel case while the Realizable k–ε model performed better for the confluent channel case.