Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sustainability, 1(15), p. 561, 2022

DOI: 10.3390/su15010561

Links

Tools

Export citation

Search in Google Scholar

Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The traditional manual approach of pavement condition evaluation is being replaced by more sophisticated automated vehicle systems. Although these automated systems have eased and hastened pavement management processes, research is ongoing to further improve their performances. An average state road agency handles thousands of kilometers of the road network, most of which have multiple lanes. Yet, for practical reasons, these automated systems are designed to evaluate road networks one lane at a time. This requires time, energy, and possibly more equipment and manpower. Multiple Linear Regression (MLR) analysis and Artificial Neural Network (ANN) were employed to examine the feasibility of modeling and predicting pavement distresses of multiple lanes as functions of pavement distresses of a single adjacent lane. The successful implementation of this technique has the potential to cut the energy and time requirement at the condition evaluation stage by at least half, for a uniform multi-lane highway. Results showed promising model performances that indicate the possibility of evaluating a multi-lane highway pavement condition (PC) by single lane inspection. Traffic direction parameters, location, and lane matching parameters contributed significantly to the performance of the ANN PC prediction models.