Published in

Wiley, Advanced Materials, 2024

DOI: 10.1002/adma.202312027

Links

Tools

Export citation

Search in Google Scholar

In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO<sub>2</sub> from Hydroxides

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCalcination is a solid‐state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathode materials. Here, correlative in situ X‐ray absorption/scattering spectroscopy is used to investigate the calcination of nickel‐based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data‐driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low‐temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally‐ordered layered phase upon full lithiation but remains small in size. Subsequent high‐temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.