Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 1(24), p. 660, 2022

DOI: 10.3390/ijms24010660

Links

Tools

Export citation

Search in Google Scholar

Cerebral Folate Metabolism in Post-Mortem Alzheimer’s Disease Tissues: A Small Cohort Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigated the cerebral folate system in post-mortem brains and matched cerebrospinal fluid (CSF) samples from subjects with definite Alzheimer’s disease (AD) (n = 21) and neuropathologically normal brains (n = 21) using immunohistochemistry, Western blot and dot blot. In AD the CSF showed a significant decrease in 10-formyl tetrahydrofolate dehydrogenase (FDH), a critical folate binding protein and enzyme in the CSF, as well as in the main folate transporter, folate receptor alpha (FRα) and folate. In tissue, we found a switch in the pathway of folate supply to the cerebral cortex in AD compared to neurologically normal brains. FRα switched from entry through FDH-positive astrocytes in normal, to entry through glial fibrillary acidic protein (GFAP)-positive astrocytes in the AD cortex. Moreover, this switch correlated with an apparent change in metabolic direction to hypermethylation of neurons in AD. Our data suggest that the reduction in FDH in CSF prohibits FRα-folate entry via FDH-positive astrocytes and promotes entry through the GFAP pathway directly to neurons for hypermethylation. This data may explain some of the cognitive decline not attributable to the loss of neurons alone and presents a target for potential treatment.