Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 24(155), 2021

DOI: 10.1063/5.0077327

Links

Tools

Export citation

Search in Google Scholar

Radiative dynamics and delayed emission in pure and doped InP/ZnSe/ZnS quantum dots

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We have used time-correlated single photon counting to elucidate the radiative dynamics of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) that differ in the amount and distribution of excess indium. Stoichiometric QDs having an In:P atom ratio very near unity exhibit simple luminescence kinetics. The photoluminescence (PL) rises with the 40 ps instrument response function and exhibits a decay that is close to a single exponential with a time constant that decreases from 32 to 28 ns with increasing shell thickness. QDs having excess indium (In:P ratio of 1.15–1.63) show a significant component of a slower rise time assigned to transient population of indium-based hole traps in the ZnSe shell. They also have a slower PL decay, attributed to an equilibrium between these traps, which are optically dark, and the emissive valence-band state. This results in a radiative lifetime that increases from 32 to 48 ns with increasing shell thickness. Different treatments of the InP cores prior to shell deposition result in different core/shell interfaces as indicated by resonance Raman spectroscopy, as well as differences in the amplitude and timescale of the slow PL rise and the PL decay time. These are interpreted in terms of different radial distributions of the indium-based hole traps, which can be related to differences in the interfacial lattice strain.