Published in

MDPI, Remote Sensing, 2(15), p. 347, 2023

DOI: 10.3390/rs15020347

Links

Tools

Export citation

Search in Google Scholar

A Remote-Vision-Based Safety Helmet and Harness Monitoring System Based on Attribute Knowledge Modeling

Journal article published in 2023 by Xiao Wu, Yupeng Li ORCID, Jihui Long, Shun Zhang ORCID, Shuai Wan, Shaohui Mei ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Remote-vision-based image processing plays a vital role in the safety helmet and harness monitoring of construction sites, in which computer-vision-based automatic safety helmet and harness monitoring systems have attracted significant attention for practical applications. However, many problems have not been well solved in existing computer-vision-based systems, such as the shortage of safety helmet and harness monitoring datasets and the low accuracy of the detection algorithms. To address these issues, an attribute-knowledge-modeling-based safety helmet and harness monitoring system is constructed in this paper, which elegantly transforms safety state recognition into images’ semantic attribute recognition. Specifically, a novel transformer-based end-to-end network with a self-attention mechanism is proposed to improve attribute recognition performance by making full use of the correlations between image features and semantic attributes, based on which a security recognition system is constructed by integrating detection, tracking, and attribute recognition. Experimental results for safety helmet and harness detection demonstrate that the accuracy and robustness of the proposed transformer-based attribute recognition algorithm obviously outperforms the state-of-the-art algorithms, and the presented system is robust to challenges such as pose variation, occlusion, and a cluttered background.