Published in

arXiv, 2023

DOI: 10.48550/arxiv.2310.08916

American Chemical Society, Nano Letters, 8(24), p. 2553-2560, 2024

DOI: 10.1021/acs.nanolett.3c04602

Links

Tools

Export citation

Search in Google Scholar

Molecular Junctions for Terahertz Switches and Detectors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Molecular electronics targets tiny devices exploiting the electronic properties of the molecular orbitals, which can be tailored and controlled by the chemical structure/conformation of the molecules. Many functional devices have been experimentally demonstrated; however, these devices were operated in the low frequency domain (mainly, dc to MHz). This represents a serious limitation for electronic applications, albeit molecular devices working in the THz regime were theoretically predicted. Here, we experimentally demonstrate molecular THz switches at room temperature. The devices consist of self-assembled monolayers of molecules bearing two conjugated moieties coupled through a non-conjugated linker. These devices exhibit clear negative differential conductance behaviors (peaks in the current-voltage curves), as confirmed by ab initio simulations, which were reversibly suppressed under illumination with a 30 THz wave. We analyze how the THz switching behavior depends on the THz wave properties (power, frequency), and we benchmark that these molecular devices would outperform actual THz detectors.