Published in

MDPI, Materials, 2(16), p. 661, 2023

DOI: 10.3390/ma16020661

Links

Tools

Export citation

Search in Google Scholar

Effect of Heat Treatment on the Dry Sliding Wear Behavior of the Mg-3Zn-0.4Ca Alloy for Biodegradable Implants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The wear behavior of the Mg-3wt.% Zn-0.4wt.% Ca (ZX30) alloy was tested using a pin-on-disc configuration with AZ31 alloy discs as counterparts under dry sliding conditions. The ZX30 alloy was tested in different states: as-cast, solution-treated, peak-aged, and over-aged. Wear rates and friction coefficients were measured at different loads and sliding speeds. Abrasion and oxidation were the main wear mechanisms found in all the conditions tested. Moreover, aluminum oxides were detected on the worn surfaces, which indicates the presence of an adhesive wear mechanism. The wear behavior of the studied ZX30 alloy showed a greater tendency towards oxidative wear than other Mg alloys, and the microstructure observed strongly affected the wear behavior.