Published in

BioMed Central, Clinical Epigenetics, 1(13), 2021

DOI: 10.1186/s13148-021-01174-7

Links

Tools

Export citation

Search in Google Scholar

Investigating the DNA methylation profile of e-cigarette use

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundLittle evidence exists on the health effects of e-cigarette use. DNA methylation may serve as a biomarker for exposure and could be predictive of future health risk. We aimed to investigate the DNA methylation profile of e-cigarette use.ResultsAmong 117 smokers, 117 non-smokers and 116 non-smoking vapers, we evaluated associations between e-cigarette use and epigenome-wide methylation from saliva. DNA methylation at 7 cytosine-phosphate-guanine sites (CpGs) was associated with e-cigarette use atp < 1 × 10–5and none atp < 5.91 × 10–8. 13 CpGs were associated with smoking atp < 1 × 10–5and one atp < 5.91 × 10–8. CpGs associated with e-cigarette use were largely distinct from those associated with smoking. There was strong enrichment of known smoking-related CpGs in the smokers but not the vapers. We also tested associations between e-cigarette use and methylation scores known to predict smoking and biological ageing. Methylation scores for smoking and biological ageing were similar between vapers and non-smokers. Higher levels of all smoking scores and a biological ageing score (GrimAge) were observed in smokers. A methylation score for e-cigarette use showed poor prediction internally (AUC 0.55, 0.41–0.69) and externally (AUC 0.57, 0.36–0.74) compared with a smoking score (AUCs 0.80) and was less able to discriminate lung squamous cell carcinoma from adjacent normal tissue (AUC 0.64, 0.52–0.76 versus AUC 0.73, 0.61–0.85).ConclusionsThe DNA methylation profile for e-cigarette use is largely distinct from that of cigarette smoking, did not replicate in independent samples, and was unable to discriminate lung cancer from normal tissue. The extent to which methylation related to long-term e-cigarette use translates into chronic effects requires further investigation.