Published in

MDPI, International Journal of Molecular Sciences, 2(24), p. 1629, 2023

DOI: 10.3390/ijms24021629

Links

Tools

Export citation

Search in Google Scholar

Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

There has been a surge in interest in developing protective textiles and clothes to protect wearers from risks such as chemical, biological, heat, UV, pollution, and other environmental factors. Traditional protective textiles have strong water resistance but lack breathability and have a limited capacity to remove water vapor and moisture. Electrospun fibers and membranes have shown enormous promise in developing protective materials and garments. Textiles made up of electrospun fibers and membranes can provide thermal comfort and protection against a wide range of environmental threats. Because of their multifunctional properties, such as semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes, ZnO-based nanomaterials are a subject of increasing interest in the current review. The growing uses of electrospinning in the development of breathable and protective textiles are highlighted in this review.